Correlations Between Cerebrospinal Fluid Biomarkers Concentration and Severity of Cognitive Impairment in Alzheimer Disease

Korelacje pomiędzy stężeniami biomarkerów w płynie mózgowo-rdzeniowym a nasileniem zaburzeń funkcji poznawczych w chorobie Alzheimera

Joanna Tarasiuk¹, Katarzyna Kapica-Topczewska¹, Michał Szczepański¹, Jan Kochanowicz¹, Barbara Mroczko², Alina Kulakowska¹

¹Department of Neurology, Medical University of Białystok, Poland
²Department of Neurodegeneration Diagnostics, Medical University of Białystok, Poland

Abstract

Introduction. Alzheimer’s disease (AD) is a progressive, neurodegenerative disease and the most common cause of dementia.

Aim. The aim of the study was to assess the concentration of the 42 amino acid isoform of Aβ (Aβ1-42), Aβ1-42/Aβ1-40 (42 amino acid isoform of Aβ/40 amino acid isoform of Aβ) ratio, Tau and hyperphosphorylated Tau (pTau) protein in cerebrospinal fluid (CSF) of patients diagnosed with Alzheimer disease (AD) and to compare their correlations with degree of cognitive impairment assessed with Mini Mental State Examination (MMSE).

Material and Methods. In this study, using the ELISA immunoassay standard kits, we measured the average concentration of Aβ1-42, Aβ1-42/Aβ1-40 ratio, Tau and pTau protein, in the CSF obtained from subjects diagnosed with Alzheimer's disease (n=20, 13 women and 7 men, mean age 69.9±10.4). The cognitive functions of the patients were assessed with MMSE test. The correlations between concentration of CSF biomarkers and degree of cognitive impairment were measured using nonparametric Spearman rank correlation coefficient.

Results. Our results showed negative correlation between concentration of Tau protein in CSF and the number of points scored in MMSE test (r=-0.45; p=0.046). There was no correlation between a degree of cognitive impairment assessed with MMSE test and concentration of pTau (r=-0.42; p=0.066), Aβ1-42 (r=0.02; p=0.927), and Aβ1-42/Aβ1-40 ratio (r=-0.07; p=0.775). There was also positive correlation between concentration of Aβ1-42 and Aβ1-42/Aβ1-40 ratio (r=0.91; p<0.0001), and between concentration of Tau and pTau (r=0.94; p<0.0001).

Conclusions. Tau protein plays not only a crucial role in the early diagnostics, but also reflects the intensity of cognitive impairment in course of Alzheimer disease. (JNNN 2018;7(4):150–154)

Key Words: Tau, pTau, Alzheimer’s disease, Mini Mental State Examination, cognitive impairment

Streszczenie

Wstęp. Choroba Alzheimera (AD) jest postępującą chorobą neurodegeneracyjną i najczęstszą przyczyną otępienia.

Cel. Celem pracy była ocena stężenia 42 aminokwasowego Aβ (Aβ1-42), współczynnika 42 aminokwasowego Aβ/40 aminokwasowego Aβ (Aβ1-42/Aβ1-40), białka Tau i nadmiernie ufosforylowanej formy białka Tau (pTau) w płynie mózgowo-rdzeniowym (PMR) pacjentów z rozpoznaną chorobą Alzheimera (AD) oraz porównanie ich stężenia ze stopniem zaburzeń funkcji poznawczych ocenianych przy pomocy krótkiej skali oceny stanu psychicznego (MMSE).

Materiał i metody. W badaniu, przy użyciu standardowych zestawów testów immunologicznych ELISA, oznaczono średnie stężenie Aβ1-42, współczynnika Aβ1-42/Aβ1-40, białka Tau i pTau w PMR pobranych od pacjentów z rozpoznaną chorobą Alzheimera (n=20, 13 kobiet i 7 mężczyzn, średnia wieku 69,9±10,4 lat). Funkcje poznawcze pacjentów oceniano przy pomocy testu MMSE. Korelacje pomiędzy stężeniem biomarkerów w PMR a stopniem upośledzenia funkcji poznawczych były mierzone za pomocą nieparametrycznego współczynnika Spearmana.

 Wyniki. Otrzymane wyniki wykazały negatywną korelację pomiędzy stężeniem białka Tau w PMR oraz liczbą punktów uzyskanych w skali MMSE (r=-0.45; p=0.046). Nie stwierdzono korelacji pomiędzy stopniem nasilenia zaburzeń...
funkcji poznawczych ocenianych w teście MMSE a stężeniem pTau (r=-0,42; p=0,066), Aβ1-42 (r=0,02; p=0,927) oraz współczynnika Aβ1-42/Aβ1-40 (r=-0,07; p=0,775). Stwierdzono również pozytywną korelację pomiędzy stężeniem Aβ1-42 i współczynnikiem Aβ1-42/Aβ1-40 (r=0,91; p=0,0001) oraz pomiędzy białkiem Tau i pTau (r=0,94; p<0,0001).

Wnioski. Białko Tau odgrywa nie tylko kluczową rolę we wczesnej diagnostyce, ale również odzwierciedla nasilenie zaburzeń funkcji poznawczych w przebiegu choroby Alzheimera. (PNN 2018;7(4):150–154)

Słowa kluczowe: Tau, pTau, choroba Alzheimera, krótką skalę oceny stanu psychicznego, zaburzenia poznawcze

Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease, the most common cause of dementia. It accounts for about 5–11% of people aged over 65 years and 50% among those aged over 85 years. In AD pathophysiology there is intracellular accumulation of Tau protein (Tau) and hyperphosphorylated Tau (pTau) protein leading to formation of neurofibrillary tangles (NFTs) and extracellular accumulation of amyloid β (Aβ) in senile plaques [1,2].

Cerebrospinal fluid (CSF) biomarkers, such as Tau and pTau protein provide evidence of an ongoing AD pathophysiological process and may be good markers of cognitive impairment [2]. So far, some previous studies have reported an increased CSF concentration of Tau protein [3–5] and pTau [4,6], whereas some have found no significant change in Tau [6–10] and pTau [3,9–11] and one study reported a decrease of pTau concentration [8] in AD. Furthermore, CSF biomarker concentration have not correlated with cognitive impairment assessed with MMSE [7,12,13].

The Tau and pTau concentration correspond with the intensity of neuroaxonal degeneration. The concentration of pTau, correlates with tangle pathology, and the 42 amino acid isoform of Aβ (Aβ42) concentration correlates inversely with amount of senile plaques in the brain [14]. It is well known that the pathological processes of neurodegeneration in the brain of AD patients start more than a decade before the first symptoms of cognitive impairment are noticed [15].

The aim of the study was to measure the average concentration of Aβ1-42, Aβ1-42/Aβ1-40 ratio, Tau, pTau proteins in CSF patients diagnosed with AD, and to compare their correlations with degree of cognitive impairment assessed with Mini Mental State Examination (MMSE).

Materials and Methods

Patients

The CSF samples were obtained from 20 patients (13 women and 7 men, aged 69.9±10.4) admitted to the Department of Neurology, Medical University of Białystok. The study was approved by the Medical University of Białystok Ethics Committee for Research on Humans and Animals (R-I-002/382/2012) and written consent was obtained from all subjects. All individuals underwent lumbar puncture for diagnostic purposes.

The diagnosis of AD was based on NINCDS-ADRDA criteria (National Institute of Neurologic, Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association) [16]. All patients had progressive, significant episodic memory and impaired cognitive function lasting more than six months and validated using psychological tests.

Samples Preparation and Evaluation Test

In patients with clinically probable AD we measured in the CSF the average concentration of Aβ1-42, Aβ1-42/Aβ1-40 ratio, Tau and pTau proteins using the ELISA INNOTEST® kits (Innogenetics GmbH, Hannover, Germany). The Cut-off values were provided by laboratory kit instruction. We also assessed patients’ degree of cognitive impairment using Mini Mental State Examination (MMSE). MMSE is a 30-point questionnaire which assesses registration, attention, calculation, recall, language, repetition, ability to follow commands and orientation to time, place [17,18]. A score of ≤9 points indicates severe cognitive impairment, 10–18 points — moderate or 19–23 points — mild [17]. The characteristics of patients is shown in Table.

Table. The clinical characteristics of patients with Alzheimer disease

<table>
<thead>
<tr>
<th>Number of patients (women)</th>
<th>Year</th>
<th>MMSE</th>
<th>Aβ1-42 (Cut-off=590 pg/mL)</th>
<th>Aβ1-42/Aβ1-40 (Cut-off=300 pg/mL)</th>
<th>Tau (Cut-off=296 pg/mL)</th>
<th>pTau (Cut-off=55 pg/mL)</th>
<th>Ratio Aβ1-42/Aβ1-40 (Cut-off=0.030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (13)</td>
<td>69.9±10.4</td>
<td>20.3±7.6</td>
<td>466.45±296.65</td>
<td>353.35±176.13</td>
<td>55.2±21.67</td>
<td>0.025±0.014</td>
<td></td>
</tr>
</tbody>
</table>

MMSE — Mini Mental State Examination; Aβ1-40 — β-amyloid containing 40 amino acids; Aβ1-42 — β-amyloid containing 42 amino acids; Tau — Tau protein; pTau — hyperphosphorylated Tau protein
Statistical Analysis

The statistical analyses were performed using the Statistica 10.0 program (StatSoft, Tulsa, OK, USA). Associations between variables were measured using the nonparametric Spearman correlation coefficient. P-value <0.05 was considered as statistically significant.

Results

The concentration of Tau protein in CSF of AD patients was 353.35±176.13 pg/mL, pTau 55.2±21.67 pg/mL, Aβ1-42 466.45±296.65 pg/mL, Aβ1-42/Aβ1-40 ratio 0.251±0.014 and the number of points scored in MMSE was 20.3±7.6 (Table).

Our results showed negative correlation between concentration of Tau protein in CSF and the number of points scored in MMSE test (r=-0.45; p=0.046) (Figure 1). There was no correlation between a degree of cognitive impairment assessed with MMSE test and concentration of pTau (r=-0.42; p=0.066), Aβ1-42 (r=0.02; p=0.927), and Aβ1-42/Aβ1-40 ratio (r=-0.07; p=0.775). There was also positive correlation between concentration of Aβ1-42 and Aβ1-42/Aβ1-40 ratio (r=0.91; p<0.0001) (Figure 2) and between concentration of Tau and pTau (r=0.94; p<0.0001) (Figure 3).

Discussion

The pathological processes in the brain of AD patients start more than a decade before the first symptoms onset [15]. According to the cognitive impairment we may identify three stages of AD: preclinical AD, mild cognitive impairment (MCI) due to AD and AD with dementia [19]. The diagnosis of Alzheimer’s disease (AD) is usually done in late stages of disease when patient presents advanced cognitive impairment [14]. The assessment of CSF biomarkers may establish AD diagnosis on an early stages of pathophysiological process before clinical symptoms of cognitive impairment.

The well known CSF biomarkers of AD are total amount of Tau protein, which reflects the intensity of neuroaxonal degeneration, pTau, which correlates with tangle pathology, and the 42 amino acid isoform of Aβ (Aβ42), which correlates inversely with number of senile plaques [14,20,21]. Tau is a microtubule-associated protein, located in the neuronal axons, responsible for microtubule assembly and stability [22]. In AD Tau becomes abnormally hyperphosphorylated, which is caused by an imbalance between multiple kinases and phosphatases [22]. Hyperphosphorylated Tau (pTau) forms intraneuronal filamentous inclusions called neurofibrillary tangles (NFTs) [23].
In our studies, we found that increased concentration of Tau protein in contrast to pTau, Aβ1-42, Aβ1-42/Aβ1-40 ratio in CSF patients with AD were associated with a higher degree of cognitive impairment measured with MMSE. This is in agreement with previous studies demonstrating that the concentration of Tau protein in CSF patients with AD positively correlates with neuronal degeneration and cognitive decline [24]. Also in patients with mild cognitive impairment (MCI), high concentration of Tau and pTau proteins with low levels of Aβ1-42 are strongly associated with future development of AD [24–26].

In our study concentration of pTau protein did not correlate with cognitive impairment assessed in MMSE. Our patients were the elderly group (69.9±10.4) in later stages of disease with MMSE (20.3±7.6). This may result from that in later stages of AD there is decrease in pTau concentration, which probably is related to the extensive neuronal loss [27]. There are still conflicting data on pTau concentration in CSF of patients with AD. In some studies there were described a decrease of pTau concentration in AD [8] and an increase in stable MCI [27] and in some studies in AD patients [4,6]. The longitudinal changes in the CSF biomarkers did not correlate with cognitive functioning in one study [28], in another studies a decrease of pTau concentration correlated with faster MMSE decline [10,27], but in others an increase of pTau concentration correlated with cognitive impairment progression [10,13]. The increase of CSF Tau and pTau is rather seen in MCI and an early stages of AD, and the decrease in late stages of AD, which is associated with the extensive neuronal loss.

In accordance with previous studies, Aβ1-42 concentration and Aβ1-42/Aβ1-40 ratio did not correlate to the degree of cognitive impairment in our patients. It may be caused by the fact that Aβ1-42 deposition starts at an early stage of AD, when the brain atrophy is not so extended and cognitive impairment not severe yet [29,30].

Conclusions

The results of our studies suggest that higher concentration of Tau protein in CSF patients suffering from AD indicates a crucial role of this protein not only in the early diagnostics, but also in assessment of the intensity of cognitive impairment in course of Alzheimer disease. Since neurodegeneration begins much earlier than the appearance of clinical signs, determining the appropriate diagnostic markers is important in the early diagnosis of Alzheimer disease.

Implications for Nursing Practice

Alzheimer’s disease (AD) affects mainly elderly people and significantly decreases patients and their families quality of life. Comprehensive approach in care over patient is recommended for nursery staff, including education of patient and his family on disease symptoms and teaching methods of coping with dementia.

References

Corresponding Author:
Joanna Tarasiuk
Department of Neurology
Medical University of Białystok
ul. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland
e-mail: amirtarasiuk@wp.pl

Conflict of Interest: None
Funding: None

Author Contributions: Joanna TarasiukA–H, Katarzyna Kapica-TopczewskaC, E, G,Michał SzczepańskiR, F, Jan KochanowiczH, Barbara MroczkoB, Alina KulakowskaA–I
(A — Concept and design of research, B — Collection and/or compilation of data, C — Analysis and interpretation of data, D — Statistical analysis, E — Writing an article, F — Search of the literature, G — Critical article analysis, H — Approval of the final version of the article, I — Acquisition of assets [eg financial])
Received: 27.10.2018
Accepted: 29.11.2018